
CSE 210: Computer Architecture

Lecture 22: Floating Point

Stephen Checkoway

Slides from Cynthia Taylor

1

CS History: IBM 704 Data-Processing Machine

Man and woman working with IBM type 704

electronic data processing machine used for making
computations for aeronautical research. By NASA,
Public Domain

• First mass-produced computer with
floating point arithmetic

• Introduced in 1954

• Had 36 bit words

• Floating point had
– 1 sign bit

– 8 bit exponent (biased by 127)

– 27 bit fraction (no hidden bit)

• "pretty much the only computer that
could handle complex math” at the time

• (Lisp was originally implemented on the
IBM 704. Car and cdr come from this
machine.)

Review

• Unsigned 32-bit integers let us represent 0 to 232 – 1

• Signed 32-bit integers let us represent – 231 to 231 – 1

• 32-bit floating point numbers let us represent a wider range of
values: larger, smaller, fractional

(-1)s * 1.x * 2e

• 1 bit for sign s (1 = negative, 0 = positive)

• 8 bits for exponent e

• 0 bits for implicit leading 1 (called the “hidden bit”)

• 23 bits for significand (without hidden bit)/fraction/mantissa x

Special Cases

• Subnormal number: Numbers with magnitude smaller than 2-126

– They have an implicit leading 0 bit and an exponent of 2-126

• NaN: Not a Number. Results from 0/0, 0 * ∞, (+∞) + (–∞) , etc.

Exponent Significand

Zero 0 0

Subnormal 0 Nonzero

Infinity 255 0

NaN 255 Nonzero

Overflow/underflow

• Overflow happens when a positive exponent becomes too
large to fit in the exponent field

• Underflow happens when a negative exponent becomes too
large (in magnitude) to fit in the exponent field

• One way to reduce the chance of underflow or overflow is to
offer another format that has a larger exponent field

– Double precision – takes two 32-bit words

Double precision in IEEE Floating Point

s E (exponent) F (fraction)

1 bit 11 bits 20 bits

F (fraction continued)
32 bits

Floats in higher-level languages

• C, Java: float, double

• JavaScript: numbers are always 64-bit double precision

• Rust: f16*, f32, f64

– f16 is a 16-bit “half precision” floating point type, support is currently
experimental

• Sometimes intermediate values (e.g., x*y in x*y + z) may be
doubles (or larger types!) even when the inputs are all floats

Which of these numbers does not exist in
JavaScript?

A. 9007199254740991

B. 9007199254740992

C. 9007199254740993

D. 9007199254740994

E. More than one of the above

Hint: 9007199254740992 is 253

There are always 252 evenly spaced doubles
between 2n and 2n+1. How many floats will there be

between 2n and 2n+1?
A. 28

B. 223

C. 232

D. 252

E. None of the above

Float

Double

Weird Float Tricks

• For floats of the same sign:

– Adjacent floats have adjacent integer representations

– Incrementing the integer representation of a float moves to the next
representable float, moving away from zero

• This is specific to the IEEE 754 implementation of floating point!

• Want to play around with floats?

– https://float.exposed/

Adding floating point numbers together

1. Denormalize inputs so both have the larger exponent by
shifting the input with the smaller exponent to the right (shift
the bits of the significand to the right)

2. Add the significands together, taking the sign into account

3. Normalize the result by shifting the significand left or right as
necessary to have a single 1 bit to the left of the binary point

Adding in floating point (assuming 4 fractional bits)

Add together 1.1011 * 20 and 1.0110 * 22

1. Denormalize so both have the larger exponent

– 0.0110 * 22 + 1.0110 * 22

2. Add significands taking sign of numbers into account

– 1.1100 * 22

3. Normalize to a single leading digit (nothing to do in this case)

– 1.1100 * 22

We got 1.1011 * 20 + 1.0110 * 22 = 1.1100 * 22

1.1011 * 20 = 1.6875

1.0110 * 22 = 5.5

1.1100 * 22 = 7.0

But 1.6875 + 5.5 = 7.1875

Is this the correct result?

A. Yes [explain the discrepancy between 7.0 and 7.1875]

B. No [why not? Is there a more correct result?]

C. I have no idea what is going on, please explain more!

We got the wrong result

1.1011 * 20 + 1.0110 * 22 = 1.1100 * 22 isn’t the correct result
because there’s a floating point value with 4 fractional bits that’s
closer to the correct answer

1.1101 * 22 = 7.25 which is closer to the correct result, 7.1875,
than 7.0 is

Why did we get the wrong result?

Add together 1.1011 * 20 and 1.0110 * 22

1. Denormalize so both have the larger exponent:
0.0110 * 22 + 1.0110 * 22

2. Add significands taking sign of numbers into account: 1.1100 * 22

3. Normalize to a single leading digit: 1.1100 * 22

A. The algorithm was wrong!
B. We lost some bits in step 1
C. We lost some bits in step 2
D. We lost some bits in step 3
E. Uh…

The fix is to use more bits for the shifted
significands in step 1. Let’s use 8 bits.

Add together 1.1011 * 20 and 1.0110 * 22

1. Denormalize so both have the larger exponent:
0.0110110 * 22 + 1.0110000 * 22

2. Add significands taking sign of numbers into account:
1.1100110 * 22

3. Normalize to a single leading digit: 1.1100110 * 22

4. Round to 4 fractional bits: 1.1101 * 22

What other problems could we run into doing this in
hardware with 32-bit floats?

A. Added fraction could be longer than 23 bits

B. Normalized exponent could be greater than 127 or less than
-126

C. Shifting fraction to match largest exponent could take more
than 23 bits

D. The inputs could be zero or the result could be zero

E. More than one of the above

Floating point addition algorithm

Input: two single-precision, floating point numbers x, and y
Output: x + y
1. If either x or y is 0, return the other one
2. Denormalize x or y to give them both the larger exponent (use 64-

bit integers to hold the significands; hidden bit + 23-bit fraction
shifted to the left by 32 bits)

3. Add the significands (as 64-bit integers), taking sign into account
4. If the result is 0, return 0
5. Normalize the result by shifting the added significands left/right

and increasing/decreasing the exponent
Ex: 10011.101 * 2-1 = 1001.1101 * 20 = 100.11101 * 21

In Javascript, you perform the operation
9007199254740992 + 1. What is the result?

A. -9007199254740992

B. 9007199254740992

C. 9007199254740993

D. This will cause an error

E. None of the above

How many times will this loop run in python?
a = 1000

while a != 0:

 a -= 0.001

A. 1000 times

B. 100000 times

C. 1000000 times

D. It will run forever

E. None of the above

This will run forever
a = 1000

while a != 0:

 a -= 0.001

• a is never 0, instead it goes from 1.673494676862619e-08 to -
0.0009999832650532314.

• Takeaway: Float equality is hard! Usually want to check within
a small range

FP Adder Hardware

• Much more complex than integer adder

• Doing it in the general purpose ALU/CPU would take too long

– Much longer than integer operations

– Slower clock would penalize all instructions

• FP adder usually takes several cycles

FP Adder Hardware

Step 1

Step 2

Step 3

Step 4

Reading

• Next lecture: Floating Point, addressing

27

	Slide 1: CSE 210: Computer Architecture Lecture 22: Floating Point
	Slide 3: CS History: IBM 704 Data-Processing Machine
	Slide 4: Review
	Slide 5: (-1)s * 1.x * 2e
	Slide 6: Special Cases
	Slide 7: Overflow/underflow
	Slide 8: Double precision in IEEE Floating Point
	Slide 9: Floats in higher-level languages
	Slide 10: Which of these numbers does not exist in JavaScript?
	Slide 11: There are always 252 evenly spaced doubles between 2n and 2n+1. How many floats will there be between 2n and 2n+1?
	Slide 12: Weird Float Tricks
	Slide 13: Adding floating point numbers together
	Slide 14: Adding in floating point (assuming 4 fractional bits)
	Slide 15
	Slide 16: We got the wrong result
	Slide 17: Why did we get the wrong result?
	Slide 18: The fix is to use more bits for the shifted significands in step 1. Let’s use 8 bits.
	Slide 19: What other problems could we run into doing this in hardware with 32-bit floats?
	Slide 20: Floating point addition algorithm
	Slide 21: In Javascript, you perform the operation 9007199254740992 + 1. What is the result?
	Slide 23: How many times will this loop run in python?
	Slide 24: This will run forever
	Slide 25: FP Adder Hardware
	Slide 26: FP Adder Hardware
	Slide 27: Reading

